pytraj.analysis.nmr.
jcoupling
(traj=None, mask='', top=None, kfile=None, dtype='dataset', frame_indices=None)¶compute j-coupling
Parameters: | traj : any things that make frame_iter_master returning Frame object command : str, default “”
kfile : str, default None, optional
dtype : str, {‘dataset’, ...}, default ‘dataset’ |
---|
Examples
>>> import pytraj as pt
>>> traj = pt.datafiles.load_tz2()
>>> data = pt.calc_jcoupling(traj, ':1-12', kfile='data/Karplus.txt')
pytraj.analysis.nmr.
ired_vector_and_matrix
(traj=None, mask='', frame_indices=None, order=2, dtype='tuple', top=None)¶perform vector calculation and then calculate ired matrix
Parameters: | traj : Trajectory-like or iterable that produces mask : str or a list of strings frame_indices : array-like, optional, default None
order : default 2 dtype : output’s dtype, {‘dataset’, ‘tuple’} default ‘dataset’ top : Topology, optional, default None |
---|---|
Returns: | out : if dtype is ‘dataset’, return pytraj.DatasetList with shape=(n_vectors+1,)
|
Examples
>>> import pytraj as pt
>>> traj = pt.datafiles.load_tz2_ortho()
>>> h = pt.select('@H', traj.top)
>>> n = h - 1
>>> nh = list(zip(n, h))
>>> vecs, mat = pt.ired_vector_and_matrix(traj, mask=nh)
>>> dslist = pt.ired_vector_and_matrix(traj, mask=nh, dtype='dataset')
pytraj.analysis.nmr.
nh_order_parameters
(traj, vector_pairs, order=2, tstep=1.0, tcorr=10000.0, n_cores=1, **kwargs)¶compute NH order parameters
Parameters: | traj : Trajectory-like vector_pairs : 2D array-like, shape (n_pairs, 2) order : default 2 tstep : default 1. tcorr : default 10000. kwargs : additional keyword argument |
---|---|
Returns: | S2 : 1D array, order parameters |
Examples
>>> import pytraj as pt
>>> traj = pt.datafiles.load_tz2_ortho()
>>> h_indices = pt.select('@H', traj.top)
>>> n_indices = h_indices - 1
>>> nh_pairs = list(zip(n_indices, h_indices))
>>> data = pt.nh_order_parameters(traj, nh_pairs)